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A Generalized Scattering Matrix Approach

for Analysis of Quasi-Optical Grids and

De-Embedding of Device Parameters
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Abstract— A generalized scattering matrix approach to an-

alyzing quasi-optical grids used for grid amplifiers and grid
oscillators is developed. The approach is verified by a novel

method for de-embedding, in a waveguide simulator, the active
device parameters of a differential pair high electron mobility

transistor (HEMT) from the single unit cell of a grid amplifier.

The method incorporates the additional ports presented to the
active device into a method of moments solution of the embedding
periodic array. The port(s) defined at the device or load location
are within the plane of the array, and not terminated in a
microstrip line with a known characteristic impedance. Therefore

the generalized scattering matrix for the embedding array is
normalized to the calculated input impedance(s) at these port(s).

The approach described here uses a Floquet representation of the
fields incident and reflected from the grid as the remaining ports
in the generalized scattering matrix. The use of Floquet modes

allows analysis of general geometries and nonnormal incident an-

gles without the need for magnetic and electric wall assumptions.
By developing a generalized scattering matrix for the embedding

periodic array, this approach now allows conventional amplifier

design techniques and analysis methods to be applied to quasi-
optical grid amplifier and oscillator design. The major advantage
of this unification for grid amplifier design being that the stability
of the design can be predicted.

I. INTRODUCTION

I N a simple, single layer grid oscillator or grid amplifier

design, a large number of solid state devices are combined

in a periodic m-ray, or grid, that is supported by a dielectric sub-

strate layer. This provides a means for spatial power combining

in the cases of grid oscillators, and spatial amplification in

the case of grid amplifiers, making these approaches attractive

for quasi-optical systems. In designing these systems, what is

needed is a design and analysis method that combines: 1) the

quasi-optical nature of the exciting electromagnetic fields, 2)

the periodic nature of the array, and 3) the solid state device

parameters which are often given in the familiar S parameter

form.
The basis for this design philosophy has its beginnings in the

equivalent circuit approach [1], that separates the equivalent
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circuit of the grid or array, from the model for the device.

This equivalent circuit approach allows the device parameters

to be included into a model of a single unit cell of the grid.

Equivalent circuit approaches are limited by the accuracy

of the assumed current distributions. which allow for the

placement of electric and magnetic walls in the unit cell.

But the relative simplicity of the approach has allowed it to

be applied successfully to both oscillators [2], [3] and grid

amplifiers [4], [5].

To allow for a more general representation of the unit

cell, a more detailed analysis using a current discretization

on the unit cell has been done recently by Bundy et al.

[6], [7]. Their approach elevates the design procedure to

one which finds the scattering matrix for the periodically

repeated grid unit cell, what will be referred to here as the

embedding array, and one for the scattering matrix of the

device. Unfortunately, magnetic and electric walls are still

needed, and therefore only a single TEM input polarization

can be used. What is needed is an analogous approach to

multimode networks of planar periodic gratings [8], that

uses a complete set of fields to generate a scattering matrix

for the embedding array. The complete set of fields must

be valid for normal and nonnormal excitation, and include

the two orthogonal input and output polarizations. Thus the

method described here combines a generalized scattering ma-

trix representation for the fields scattered from a periodic grid

[9], [10], with the the port locations for the device [1 1],

and finally with the scattering matrix representation for the

device.

Since a common configuration for grid amplifiers is one

that uses two orthogonal polarizations for input and output

[4], the two orthogonal polarizations will be included in the

generalized scattering matrix developed here. Thus for angles

including normal incidence, the orthogonal polarizations will

be described by the TE and TM decompositions of the Floquet
harmonics, which are determined by the periodicity of the

grid cells. This allows the effects of coupling between the

input and output ports shown in Fig. 1, aggravated by the

presence of the dc bias lines needed for device biasing, to

be included in the analysis. The coupling between input and

output ports is a critical parameter in determining stability of a

grid amplifier design in order to avoid unwanted oscillations.
Potential instabilities of the system can be examined when the

generalized scattering matrix developed here is combined with

the scattering matrix of the device.

0018–9480/96$05,00 @ 1996 IEEE
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Fig. 1. Overview showing dktinction between the generalized scattering matrix of the grid, Sn”m, and the dlfferentiat pair device under test. Note that
input and output are separated by orthogorral polarizations at normat incidence.

One of the key future prospects of grid amplifier/oscillator

technology is the desire to monolithically fabricate the en-

tire amplifying array on a single wafer for high frequency

applications. This would avoid hybrid approaches, leading

to more consistent device placement, connection, and con-

sistency among device characteristics. This in turn, would

allow for maximum reliability and performance of the grid

while minimizing cost. In order to simplify the fabrication,

it is desirable that the array be planar in nature, with the

need for via holes kept to a minimum. In doing this, as in

[4], the amplifying device is not placed within an unbalanced

microstrip line configuration but in balanced differential mode.

This makes it difficult to measure device S parameters in the

array environment, or using conventional 50 Q microstrip line

measurement techniques. But once the generalized scattering

matrix approach as described here is applied, the planar array

is described by a known scattering matrix which then becomes

the embedding network [12]. Once known, the scattering

parameters of the embedding network, the embedding array,

can be used to de-embed the amplifying device parameters.

This approach will be used to de-embed the S parameters of a

differential pair HEMT using a single unit cell in a waveguide

simulation of the infinite array. Note that the S parameters of

the differential pair HEMT will be referred to as Sd”t, as it

is the device under test.

II. GENERALIZED SCATTERING MATRIX WITH DEVICE PORTS

Fig. 1 shows the general geometry of the grid amplifier that

is to be modeled. Input and output antennas are shown as

orthogonal dipoles, with the horizontal dipole providing a port

location to which the gates of the differential pair HEMT are

attached, and the vertical dipole providing the output port at

which the drains of the device are connected. In order to form

a complete set for the field components on both sides of the

grid amplifier, they are described by Floquet harmonics as

shown in Fig. 2. Note that the grid amplifier is described by

Floquet harmonics in the two half-spaces designated regions

1 and 2, where the z axis forms the normal to the embedding

array. As depicted in Figs. 1 and 2, the purpose of the method

proposed is to find the generalized scattering matrix that

describes the periodic array containing the two device ports,

Snum. The array is assumed to be itdinite and periodic in the

plane perpendicular to the z axis, so that a single unit cell of

the structure can be modeled. Note that Sn”m represents the

scattering matrix of the embedding periodic, array, and does

not include the scattering matrix of the device(s) Sdut.

To find Sn”m, the upit cell is described in terms of the

currents on the metallic surfaces of the unit cell, including

those of any bias lines present. These currents will generate

scattered fields in terms of Floquet harmonics, where each

scattered Floquet harmonic represents a port in the generalized

scattering matrix to be computed. To find the scattering

matrix, Sn”m, the structure is excited with an incident Floquet

Harmonic at one port, and the coefficients of the scattered

harmonics in region 1 and region 2 are computed with all

ports matched. Since the infinite half spaces are inherently

matched, it is necessary to match the ports at the device

locations. This is done by first computing the input impedance

at each of these ports, which is used as the reference impedance

for these port locations. The scattering parameters between

the incident Floquet harmonic ports and all the other ports,

including device ports, are then founcl directly. The scattering

parameters between device ports ancl Floquet harmonics are

then computed from the symmetry of the generalized scattering

parameters.

A. Scattered Fields

To find the scattered Floquet modes at the output ports 1

to n + m in Fig. 2, it is necessary to compute the scattered

fields from the periodic array when all ports are matched.

The scattered and incident fields can be related to the surface

currents by enforcing the electric field boundary condition on

the metallic surfaces of the unit cell using the impedance

boundary condition [13]

- inc - scat
E +E = .ZJ.. (1)

Here Zs account for surface losses, and will later be

generalized to include the port locations, loaded in their

terminating impedances, needed for the active device.
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Fig. 2. General form of generalized scattering matrix containing n + m Floquet modes in region 1 and region 2

Formulating with the spectral domains Green’s functions as

done by Tsao [14]

Note that the Green’s functions G are modified according

to the spectral domain immitance [15] approach to contain the

effects of the superstrata and substrate layers supporting the

metallic layer. And, that the Floquet harmonics

k
27rm

.rm =
~ ~ ~inc

%>
x

d-ymn = & – k:m – /%2
yrl (4)

the unit cell dimensions and the propagationare related to
constants of the incident field. Here Tz is the dimension of

the unit cell in the x-direction and k~ is the corresponding

phase shift of the incident field due to nonnormal incidence,

The unit cell dimension in the y-direction is Tv and phase

shift k~ is defined accordingly.

Next the unit cell is divided into an i14 by N grid of

rectangular subdomains that are spanned by rooftop basis

functions. By appropriately choosing M = N = 2n the unit

cell is discretized in a manner such that one can take full

advantage of the fast Fourier transform method to speed up the

numerical evaluation of the integrals involved [16]. Extending

the surface impedance so that it is a function of position leads

to a surface impedance that can be specified on each individual

patch in the M by N grid [17]. Once this is done, the ports for

the device under test can be matched by specifying the surface

impedance at the port location such that the current and voltage

at the port are related by the terminating impedance. Using

Galerkin’s method, a solution for the currents then allows for

the computation of the scattered fields in terms of Floquet

harmonics reflected and transmitted by the grid. The currents

also allow the power absorbed at the device locations to be

computed under matched conditions, and thus the scattering

parameters at these ports. These will be discussed in the next

sections.

B. Normalized Floquet klodes

The analogous voltages and currents of the Floquet har-

monics must be computed in order to properly normalize the

scattering parameters of the periodic grid and ensure that a

symmetric scattering matrix results. Since the quantities of

interest are the scattered fields themselves, the Floquet modes

for the tangential electric fields are [18]

where + indicates that the sign of the electric field components

remains the same for propagation in the +Z or —z directions.
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The tangential magnetic fields can be found through the

characteristic impedance

{

–for (+z) propagation
i%(m, n) = +.2;2? x ii(rn,n)

+for ( –z) propagation
(7)

where i is either TE or TM and

ZTE .32, ZTM . ~. (8)

The tangential fields are sufficient to define the normalized

Floquet voltage waves [9] at a plane z as they represent

power traveling in the +Z direction. Note that in defining the

TE and TM fields, such as shown in (5) and (6), they have

been normalized to obtain a symmetric scattering matrix for

reciprocal structures

//
d: X ;: . (+ dS = 1, z = TE or TM. (9)

unit cell

The normalizing direction, +2, is dependent on whether the

waves are forward or backward traveling. Therefore the sign

of either ~TE or hTE must change dependent on the direction

of propagation. As mentioned previously, it is convenient to

choose the sign of the electric field components to remain the

same, except for the necessary change on the ~mn exponent

in (4). Thus

~4 = ~:
22 and ~~ = –~~ for z = O, i= TEor TM

(lo)

guarantees that reflection from a pec plate will give a reflection

coefficient of – 1.

The total tangential electric field at a reference plane z =

,/ is then weighted by the appropriate coefficients of the

normalized Floquet harmonics

fi~(m,n) = Cf(rn, n) e~(rn, n) + C,: (m, n)~(m, n)

i= TEor TM (11)

where C~E (m, n) e~~ (m, n) is analogous to the forward

traveling voltage on a transmission line. Likewise the magnetic

field will correspond to the forward traveling current, which

is related to the elecqic field via (7). From (11) the scattering

parameters can be defined at port i due to an incident Floquet

harmonic at port j,

c:(rn, n) @(%~)= C,+(rn, n)e*~~”z’
(12)

‘i~ = C~(m, n) e~(m, n) C~(m,~)eZTntnZ’

where the reference plane is located at z = y = O and z = z’.

C. Power Waves at the Device Under Test (D UT)

It is now necessary to define the scattering parameters at the

device ports due to incident Floquet harmonics. For the planar

geometry as shown in Fig. 1, the device port locations are

,not terminated in transmission lines with known characteristic

impedance. Therefore it is necessary to choose generalized

power waves as described by Kurokawa [19]

(13)

(14)

By convenience, the normalizing impedance Z~ at the kth

port is chosen to be the input impedance. Thus the scattering

parameters as given by (12) are determined with the device

ports matched, Vk = –Zkfk, so that a~ = 0,

The scattering parameters between the jth incident Floquet

harmonics and kth device ports are then computed via

by conveniently choosing C3* (m, n)e~~~~z’ = 1. By reci-

procity, the scattering parameters due to excitation at the

device ports are found by using the symmetry of the resulting

scattering matrix. The input reflection coefficient at the kth

device location, S~~ is then computed by

(16)
~k + ~k

Thus (12), (15), and (16) define the generalized scattering

matrix for the periodic array. Note that when the supporting

superstrata and substrates materials me lossless, the computed

generalized scattering matrix satisfies the usual conditions re-

lated to power conservation. The generalized scattering matrix

approach will be verified in the next section by measurements

in a waveguide simulator.

III. WAVEGUIDE SIMIJLATION

Fig. 3 shows the one port dipole unit cell to be simulated in

a waveguide simulator. The substrate is supported by Rogers

RT/duroid 5880, e. = 2.2, that is 0.32 cm thick. To support

two orthogonal modes for two port device measurements, the

unit cell was placed in square waveguide. The dimensions of

one edge of the square unit cell is 4.74 cm, and the dipole
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Fig. 4. Waveguide method of one-port Sparameter de-embedding using asirrgle unit cell. Note that S31. S~l, ,. are computed by numerical analysis.

has a length of 4.0 cm and width of 0.44 cm. The dipole is

loaded with a chip resistor of length 0.1 cm, width 0.5 cm,

and height of 0.04 cm.

Fig. 4 shows a simplified diagram of the one-port device

in the waveguide. In this simplified diagram the generalized

scattering matrix, Snum, computed by the procedure outlined

above results in a three-port scattering matrix relating the field

quantities at ports 1 and 2, to the power wave representation

at the device port of port 3. Upon calibration at the waveguide

ports, the computed generalized scattering mamix of Snum

then forms the embedding network to which the chip resistor

is attached. Since the scattering matrix for this embedding

network is known, the scattering parameters of the chip

resistor load, Sd”t, can be determined from measurements at

waveguide ports 1 and 2. Therefore the approach taken here

to verify S ‘“m is as follows: the scattering matrix for the

embedding network Snum will be computed, a known device

under test represented by Sdut will be attached, the scattering

matrix at the external ports of the complete system consisting

of Sn”m attached to Sd”t is measured, Sdut is computed from

the measured data.

In the more general case which uses a square unit cell

the measurement of the two orthogonal TE modes, TEo1 and

TEIO, in the square waveguide are required. For measurement

of these two orthogonal modes, orthomode junctions become

part of the embedding network as shown in Fig. 5. Therefore

the generalized scattering matrix for the unit cell, Snum,

is represented by a five-port generalized scattering matrix

for a one-port device, and a six-port generalized scattering

matrix for a two-port device. The composite scattering matrix

resulting from the combination of Sn”m and Sd”t with the

measured scattering parameters of the orthomodes forms a
four-port embedding network. Measurement of the resulting

four-port scattering matrix then allows for extraction of Sd”t.

A. Test Setup Characterization

Addition of the orthomode junctions into the measurement

setup requires measurement of the S parameters of these

four-port devices. Determination of the S parameters of the

orthomodes is complicated by the need to place standards

at the square waveguide port that match one of the TE

modes, while reflecting the orthogonal mode with known

magnitude and phase. This was accomplished by using a

stepped transition in one dimension from 4.74 cm to 3.27 cm,

and then from 3.27 cm to rectangular waveguide of 2.21 cm

by 4.74 cm, which only supports one dominant TE mode. A

mode-matching solution was used to calculate the magnitude

and phase of the stepped transition so that it could be used

as a standard in determination of the S parameters of the

orthomode junctions.

In order for the relatively narrow band stepped transitions to

exhibit greater than 20 dB return loss, and to avoid introduction

of the higher order TE11 and TM11 modes, it was necessary

to limit the measurement range from 4.0 GHz to 4.4 GHz.

Note that the addition of the orthomodes creates a source

of uncalibrated error in the measurement system, which is

calibrated in rectangular waveguide. Assessment of errors due

to the presence of the orthomodes was done by connecting

two “identical” orthomodes so that their square waveguide

ports are together. The external ports presented then allow for

a four port measurement in rectangular waveguide. Thus the

perfect “thru” junction between the two orthomodes can be

de-embedded. This measurement indicated a maximum of 8%

error in magnitude of one propagating mode, and 3 ‘XO error in

the magnitude of the orthogonal square waveguide mode with

phase error less than 2.2 degrees for both modes.

The use of square waveguide for simulation of a periodic

array requires the solution of the periodic array problem for

the two Floquet modes composing the TEO1 mode. These

plane waves are incident at an angle O which varies from 46

to 52 degrees over the frequency range of the measurement.

This large angle of incidence results in additional reflection

of the m = – 1 Floquet harmonic, which must be properly

combined with the two original exciting modes when forming

Sn”m. In order to satisfy the boundary conditions of the square

waveguide, a rotation of @ = 90 degrees then computes the

parameters for the TEIO mode. Thus a ten-port representation

of Sn”m using Floquet modes is reduced to a six-port scattering

matrix for waveguide simulation with a two-port device.

The square waveguide simulation of the grid amplifier used

here forces plane wave solutions that satisfy the boundary

conditions of the waveguide. Therefore it must be realized

that only in order to compare with waveguide measurement

is this behavior being forced on the solutions. It is noted that

waveguide simulation of a single unit cell is only equivalent to

an infinitely periodic grid amplifier when the periodic amplifier
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is operating in modes properly imaged by the waveguide walls.

It is noted that the infinitely periodic grid amplifier is not

limited to this subset of its possible modes of operation, nor

is the generalized scattering matrix approach.

The use of Floquet modes allows the approach here to be

applied to arbitrary angles of incidence, in addition to those

that satisfy the waveguide boundary conditions. This is evident

in the inclusion of two plane waves to properly form the

TEOI mode as described above. In practice we expect the

array to be excited by a single plane wave at an arbitrary

angle 19, which need not be representable by a waveguide

simulator, and would choose the Floquet modes for this angle

of incidence. Therefore the generalized scattering matrix could

also be applied to grid oscillators operating in a mode that

cannot be simulated using a single unit cell in a waveguide.

For grid amplifier design this method is also applicable to a

grid suffering from common-mode oscillations [20].

B. Results for a One-Port DUT

Fig. 6 shows the results of de-embedding the Sd”t parame-

ters of the unit cell shown in Fig. 3 when the load is replaced

by a conducting patch. The de-embedded Sdut parameter

shown is normalized to the antenna input impedance. The

superstrata layer for this unit cell consists of an air layer with

a thickness of 1 cm. The inclusion of the air superstrata layer

allows the generalized scattering matrix for the array to be

properly referenced to the interface of the support fixture for

the unit cell, and the face of the orthomode junction. The

support fixture used consisted of a square waveguide section

of length 1.32 cm in which the unit cell was press fitted. This

allowed for removal and replacement of the device under test.

Fig. 7 shows the de-embedded Sd”’b parameter for the unit

cell shown in Fig. 3 when it is loaded with a 51 Q chip resistor.

The theoretical curve is computed by using the computed

input impedance, Zin, which is the normalizing impedance.
The frequency dependence of the thec)retical curves is due to

the slight variation in the input impedance which varies from

(164.8 – j8.2) !2 to (178.8+ j6.1) f? from 4.0 to 4.4 GHz.

The maximum error in the measured magnitude of the device

S parameter is 8.6%.

The load impedance magnitude and phase for the one-port

device can be calculated since the normalizing impedance, the

input impedance at the device port Z,n, is known

Zload = ‘d”t ‘!,?2+ Zi~
1 _ Sdut “

(17)

The nonlinear nature of this conversion may increase or

decrease the error in the measured S parameter S ‘Ut , but puts

the results in a more readable form. Fig. 8 shows the measured

load impedance magnitude and phase as computed from (17).

The measured load magnitude is in ,error by approximately

8.4%. As expected the relative error when represented by
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Fig. 7. De-embedded Sd”t
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Fig. 8. De-embedded load impedance of the unit cell shown in Fig. 3 when the load is a 120–ohm chip resistor, (a) measured load magnitude and
(b) measured load phase.

(17) was minimal when the loading chip resistor was more

closely matched to the input impedance presented at the

device. Although it was not done here, incorporation of error

correction terms into the measurement system would alleviate

these problems.

It is appropriate to make some comment about the phase

gradients shown in Figs. 6(b) and 7(b). Some success in

minimizing the phase gradients was experienced by changing

the reference plane for the 0.32 cm thick substrate in the square

waveguide support fixture of length 1.32 cm. This indicates

that the phase gradient may be representative of a small length

change in the measurement system caused by insertion and

removal of the support fixture, or movement of the test piece

in the support fixture.

Also measurement spikes are shown in all measured curves

near 4.25 GHz, as can be seen in Fig. 8(b). The origin of the

spikes is related to the phase change of the S parameter for

the orthomode junction that describes the relationship between

a square waveguide port and its strongly coupled rectangular

port. At the frequency of 4.25 GHz there is a 180-degree phase

change in this orthomode scattering parameter. Since the two

orthomodes are not truly identical, this phase change occurs at

slightly different frequencies. Again it is believed that proper

error correction terms could remove this error. An appropriate

calibration piece for determination of the error terms would be

the unit cell shown in Fig. 3 when the load is the conducting

Fig. 9. Unit cell of two-port device for waveguide simulation. The substrate
is RT/duroid 5880 with c, = 2.2 with a thickness of 0.32 cm (0.125 irz).
The port is terminated with a differential pair HEMT designed and fabricated
at JPL.

patch. The scattering matrix for this calibration piece would

be computed by the methods described here.

Before moving to results for two-port devices it is noted that

measured transmitted and reflected parameters of the loaded

unit cell, such as those depicted by S21 and in S12 in Fig. 4,

were also measured and compared to theoretical results. These

four-port parameters were, in general, of similar accuracy
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load magnitude and (b) measured load phase.

to the load de-embedding results presented. This provided

another method of verifying a composite scattering matrix

formed from the combination of the generalized scattering

parameters for the periodic array, Sn”m, and the parameters

of the device, Sd”t. A final check on this composite scattering

matrix results from including the chip resistor directly in the

computation of S“”m through the surface impedance in (1).

C. Results for a Two-Port DUT

Fig. 9 shows the two-port unit cell used for waveguide

simulation. The substrate and individual dipole dimensions are

the same as the single dipole shown in Fig. 3. By separating

orthogonal chip resistors by a thin layer of polyimide, each

individual dipole was loaded independently with no connection

to the other device. In this configuration equation (17) can be

used to de-embed the load impedance values, the chip resistors,

from the measured data. Fig. 10 shows the measured results

when two 120 Q chip resistors are used. The average error

on the vertical loaded port, port 5, is 4.4~0 while the average

error on the horizontal port, port 6, is 15.8%. This is more

error than expected due to a worst case linear summation of

the two polarizations of the orthomodes, 11%. The maximum

phase angle measured was 24 degrees.

D. Results for a Differential Pair HEiWT Two-Port DUT

Since it is difficult to measure the differential pairs often

used in grid amplifiers [3]–[5] when operating in a balanced

mode, waveguide simulation of a single unit cell provides a

means of measuring these parameters. The unit cell configu-

ration shown in Fig. 9 was used to measure a differential pair

HEMT wire bonded in the configuration shown in Fig. 1. Upon

measurement of the four-port scattering matrix at the external

rectangular waveguide ports of the two orthomode junctions,

the two-port Sd”t parameters of the differential HEMT pair

were extracted for different bias levels.

The monolithic differential pair, shown in Fig. 1, consists of

two 0.15 micron, pseudomorphic HEMT’s along with various

passive circuitry. The devices are arranged with common

sources. The source bias pads are connected to the device
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w
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~ 0.8- -

5
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Fig. 11. Magnitude of de-embedded device Sd”t parameters, normalized to
50 ohms, when the unit cell shown in Fig. 9 is loaded with a differential pair
HEMT biased at 5 V, 8.0 nrA.

sources through 50 Q resistors in order to suppress common-

mode oscillations [4]. This resistance will contribute to the

dc power consumption of the chip, but since the sources

themselves are connected together, the resistance does not

degrade the device gain. Gates we connected to ground

through a higher value resistor for simplicity, although this

approach adversely affects the gain and provides no means for

adjusting the gate bias.

Fig. 11 shows the de-embedded two-port Sdut parameters

of the differential pair HEMT. The devices are biased with a

drain bias of 5 V and 8 mA. To put tlhe generalized scattering

parameters in a more standard form, Fig. 11 shows scattering

parameters normalized to 50 ohms. Note the large mis-match

of the devices to both input and output ports, as represented by

S1l (gates) and S22 (drains), for this normalizing impedance.

Even with the mis-matches on input and output the necessary
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50-ohms, whe; the unit cell shown in Fig. 9 is loaded with a differential pair
HEMT biased at O V.

conditions for stability

Is,,l <1, IS221<1 (18)

are satisfied. Fig. 12 shows the scattering parameters normal-

ized to 50 ohms when the drain bias becomes O V.

Fig. 13 shows the magnitude of the generalized scattering

parameters as computed, where the normalizing impedances

are the input impedances at the ports. This corresponds to

the actual device loading presented by the grid during the

waveguide measurement. The result is a more desirable match

to the device at higher frequencies as shown. And as the input

match improves, the transducer power gain, S21, increases

until the maximum of 0.8 dB is reached at 4.4 GHz.

The generalized scattering matrix for the unit cell S“um is

represented by a six-port generalized scattering matrix for this

two-port device. The coupling between port 5 of the vertical

dipole and port 6 of the horizontal dipole is < –40 dB. This

coupling represents the feedback through the embedding array

from the output of the devices to the input, and was minimized

by the symmetric geometry chosen.

IV. CONCLUSION

A generalized scattering matrix for modeling of grid am-

plifier and oscillator arrays has been developed and verified

experimentally. The method incorporates a generalized scat-

tering matrix representation for the embedding periodic array,

where Floquet harmonics represent ports of the array. These

additional ports are combined with power wave representations

at the device ports, which are in the plane of the array.

The presence of the device ports allows the scattering matrix

representation for the embedding array to be combined with

a scattering matrix for the device. Thus standard scattering

0.2 + I
~

●

o
—---, 1 1 1 I 1 I

I

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4

FREQUENCY (GHz)

Fig. 13 De-embedded dewce Sd”t parameters, normalized to input imped-

ances, when the unit cell shown in Fig. 9 is loaded with a differential pair
HEMT biased at 5 V. 8.0 mA.

matrix design methods and approaches are valid for grid

amplifier design. To verify this, the computed generalized

scattering matrix for the embedding array, Sn”m, was used to

de-embed the scattering parameters of known chip resistors.

Experimentally this involved using a waveguide simulation

of one unit cell, and combining the scattering matrices of

two orthomode junctions with the scattering matrix of the

embedding array, S“”m. With the scattering matrix between

the rectangular waveguide ports of the orthomodes and the

device ports in the unit cell then known, conventional de-

embedding techniques were used to determine the chip resistor

values Sd”t. Results for loaded dipoles with one-port and

two-port devices were presented. Scattering parameters of a

differential pair amplifier, operating in a balanced mode, were

measured using a single unit cell of a grid amplifier.

The use of Floquet harmonics avoids magnetic and electric

wall assumptions. Use of TE and TM Floquet modes allows

the orthogonal polarizations of the grid amplifier to be defined

as input and output ports in the scattering matrix. If a grid

amplifier, such as the one shown in Fig. 1, is excited by a

horizontal polarization the output is predominantly polarized

in the vertical direction. But, the presence of bias lines causes

coupling between input and output polarizations. Using the

generalized scattering matrix, this coupling was computed

for the geometry shown in Fig. 9. In addition the stability

conditions at the device ports were examined for this geometry.

The waveguide simulator environment, which specified non-

normal angles of incidence, demonstrates the flexibility of

this approach for analyzing periodic grid amplifier and grid

oscillator arrays. Although not demonstrated here, the Floquet

mode representation allows for the combination of polarizers

and other periodic structures commonly used in quasi-optical

setups by cascading of scattering matrices [9]. Furthermore,

the generalized scattering matrix representation lends itself to
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examination of the input and output stability circles of such

a quasi-optical system.
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