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A Generalized Scattering Matrix Approach
for Analysis of Quasi-Optical Grids and
De-Embedding of Device Parameters

Larry W. Epp, Member, IEEE, and R. Peter Smith, Member, IEEE

Abstract— A generalized scattering matrix approach to an-
alyzing quasi-optical grids used for grid amplifiers and grid
oscillators is developed. The approach is verified by a novel
method for de-embedding, in a waveguide simulator, the active
device parameters of a differential pair high electron mobility
transistor (HEMT) from the single unit cell of a grid amplifier.
The method incorporates the additional ports presented to the
active device into a method of moments solution of the embedding
periodic array. The port(s) defined at the device or load location
are within the plane of the array, and not terminated in a
microstrip line with a known characteristic impedance. Therefore
the generalized scattering matrix for the embedding array is
normalized to the calculated input impedance(s) at these port(s).
The approach described here uses a Floquet representation of the
fields incident and reflected from the grid as the remaining ports
in the generalized scattering matrix. The use of Floquet modes
allows analysis of general geometries and nonnormal incident an-
gles without the need for magnetic and electric wall assumptions.
By developing a generalized scattering matrix for the embedding
periodic array, this approach now allows conventional amplifier
design techniques and analysis methods to be applied to quasi-
optical grid amplifier and oscillator design. The major advantage
of this unification for grid amplifier design being that the stability
of the design can be predicted.

I. INTRODUCTION

N a simple, single layer grid oscillator or grid amplifier

design, a large number of solid state devices are combined
in a periodic array, or grid, that is supported by a dielectric sub-
strate layer. This provides a means for spatial power combining
in the cases of grid oscillators, and spatial amplification in
the case of grid amplifiers, making these approaches attractive
for quasi-optical systems. In designing these systems, what is
needed is a design and analysis method that combines: 1) the
quasi-optical nature of the exciting electromagnetic fields, 2)
the periodic nature of the array, and 3) the solid state device
parameters which are often given in the familiar S parameter
form.

The basis for this design philosophy has its beginnings in the
equivalent circuit approach [1], that separates the equivalent
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circuit of the grid or array, from the model for the device.
This equivalent circuit approach allows the device parameters
to be included into a model of a single unit cell of the grid.
Equivalent circuit approaches are limited by the accuracy
of the assumed current distributions, which allow for the
placement of electric and magnetic walls in the unit cell.
But the relative simplicity of the approach has allowed it to
be applied successfully to both oscillators [2], [3] and grid
amplifiers [4], [5].

To allow for a more general representation of the unit
cell, a more detailed analysis using a current discretization
on the unit cell has been done recently by Bundy et al.
[6], [7]. Their approach elevates the design procedure to
one which finds the scattering matrix for the periodically
repeated grid unit cell, what will be referred to here as the
embedding array, and one for the scattering matrix of the
device. Unfortunately, magnetic and electric walls are still
needed, and therefore only a single TEM input polarization
can be used. What is needed is an analogous approach to
multimode networks of planar periodic gratings [8], that
uses a complete set of fields to generate a scattering matrix
for the embedding array. The complete set of fields must
be valid for normal and nonnormal excitation, and include
the two orthogonal input and output polarizations. Thus the
method described here combines a generalized scattering ma-
trix representation for the fields scattered from a periodic grid
[9]. [10], with the the port locations for the device [11],
and finally with the scattering matrix representation for the
device.

Since a common configuration for grid amplifiers is one
that uses two orthogonal polarizations for input and output
[4], the two orthogonal polarizations will be included in the
generalized scattering matrix developed here. Thus for angles
including normal incidence, the orthogonal polarizations will
be described by the TE and TM decompositions of the Floquet
harmonics, which are determined by the periodicity of the
grid cells. This allows the effects of coupling between the
input and output ports shown in Fig. 1, aggravated by the
presence of the dc bias lines needed for device biasing. to
be included in the analysis. The coupling between input and
output ports is a critical parameter in determining stability of a
grid amplifier design in order to avoid unwanted oscillations.
Potential instabilities of the system can be examined when the
generalized scattering matrix developed here is combined with
the scattering matrix of the device.

0018-9480/96$05.00 © 1996 IEEE
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One of the key future prospects of grid amplifier/oscillator
technology is the desire to monolithically fabricate the en-
tire amplifying array on a single wafer for high frequency
applications. This would avoid hybrid approaches, leading
to more consistent device placement, connection, and con-

sistency among device characteristics. This in turn, would

allow for maximum reliability and performance of the grid
while minimizing cost. In order to simplify the fabrication,
it is desirable that the array be planar in nature, with the
need for via holes kept to a minimum. In doing this, as in
[4], the amplifying device is not placed within an unbalanced
microstrip line configuration but in balanced differential mode.
This makes it difficult to measure device S parameters in the
array environment, or using conventional 50 §} microstrip line
measurement techniques. But once the generalized scattering
matrix approach as described here is applied, the planar array
is described by a known scattering matrix which then becomes
the embedding network [12]. Once known, the scattering
parameters of the embedding network, the embedding array,
can be used to de-embed the amplifying device parameters.
This approach will be used to de-embed the S parameters of a
differential pair HEMT using a single unit cell in a waveguide
simulation of the infinite array. Note that the S parameters of
the differential pair HEMT will be referred to as S9%t, as it
is the device under test.

II. GENERALIZED SCATTERING MATRIX WITH DEVICE PORTS

Fig. 1 shows the general geometry of the grid amplifier that
is to be modeled. Input and output antennas are shown as
orthogonal dipoles, with the horizontal dipole providing a port
location to which the gates of the differential pair HEMT are
attached, and the vertical dipole providing the output port at
which the drains of the device are connected. In order to form
a complete set for the field components on both sides of the
grid amplifier, they are described by Floquet harmonics as
shown in Fig. 2. Note that the grid amplifier is described by
Floquet harmonics in the two half-spaces designated regions
1 and 2, where the z axis forms the normal to the embedding
array. As depicted in Figs. 1 and 2, the purpose of the method
proposed is to find the generalized scattering matrix that
describes the periodic array containing the two device ports,

Srum_ The array is assumed to be infinite and periodic in the
plane perpendicular to the z axis, so that a single unit cell of
the structure can be modeled. Note that S™ ™ represents the
scattering matrix of the embedding periodic array, and does
not include the scattering matrix of the device(s) S9u¢,

To find S™™, the unit cell is described in terms of the
currents on the metallic surfaces of the unit cell, including
those of any bias lines present. These currents will generate
scattered fields in terms of Floquet harmonics, where each
scattered Floquet harmonic represents a port in the generalized
scattering matrix to be computed. To find the scattering
matrix, S™™, the structure is excited with an incident Floquet
Harmonic at one port, and the coefficients of the scattered
harmonics in region 1 and region 2 are computed with all
ports matched. Since the infinite half spaces are inherently
matched, it is necessary to match the ports at the device
locations. This is done by first computing the input impedance
at each of these ports, which is used as the teference impedance
for these port locations. The scattering parameters between
the incident Floquet harmonic ports and all the other ports,
including device ports, are then found directly. The scattering
parameters between device ports and Floquet harmonics are
then computed from the symmetry of the generalized scattering
parameters.

A. Scattered Fields

To find the scattered Floquet modes at the output ports 1
to » + m in Fig. 2, it is necessary to compute the scattered
fields from the periodic array when all ports are matched.
The scattered and incident fields can be related to the surface
currents by enforcing the electric field boundary condition on
the metallic surfaces of the unit cell using the impedance
boundary condition [13]

ey

Here Z, account for surface losses, and will later be
generalized to include the port locations, loaded in their
terminating impedances, needed for the active device.
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Fig. 2. General form of generalized scattering matrix containing n 4+ m Floquet modes in region 1 and region 2.

Formulating with the spectral domains Green’s functions as
done by Tsao [14]

m,n==4o00
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m,n=—o0

[J=(m,
Jy(m
Note that the Green’s functions G are modified according

to the spectral domain immitance [15] approach to contain the

effects of the superstrate and substrate layers supporting the

metallic layer. And, that the Floquet harmonics

Ja
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are related to the unit cell dimensions and the propagation
constants of the incident field. Here T, is the dimension of
the unit cell in the 2-direction and ki is the corresponding
phase shift of the incident field due to nonnormal incidence.
The unit cell dimension in the y-direction is 7}, and phase
shift k™ is defined accordingly.

Next the unit cell is divided into an M by N grid of
rectangular subdomains that are spanned by rooftop basis
functions. By appropriately choosing M = N = 2" the unit
cell is discretized in a manner such that one can take full
advantage of the fast Fourier transform method to speed up the
numerical evaluation of the integrals involved [16]. Extending
the surface impedance so that it is a function of position leads

to a surface impedance that can be specified on each individual
patch in the M by N grid [17]. Once this is done, the ports for
the device under test can be matched by specifying the surface
impedance at the port location such that the current and voltage
at the port are related by the terminating impedance. Using
Galerkin’s method, a solution for the currents then allows for
the computation of the scattered fields in terms of Floquet
harmonics reflected and transmitted by the grid. The currents
also allow the power absorbed at the device locations to be
computed under matched conditions, and thus the scattering
parameters at these ports. These will be discussed in the next
sections.

B. Normalized Floquet Modes

The analogous voltages and currents of the Floquet har-
monics must be computed in order to properly normalize the
scattering parameters of the periodic grid and ensure that a
symmetric scattering matrix results. Since the quantities of
interest are the scattered fields themselves, the Floguet modes
for the tangential electric fields are [18]

JWho 1
Ymn cell area

_t
€rp(m,n) =

1 ped —
R, R R mn) )
Ymn 1

Jwe /cell area

1 — —
W(kzz + kyg)¥(m,n)

o

é'%E(ma n) =
(6)

where & indicates that the sign of the electric field components
remains the same for propagation in the +2 or —z directions.



EPP AND SMITH: A GENERALIZED SCATTERING MATRIX APPROACH FOR ANALYSIS OF QUASI-OPTICAL GRIDS 763

The tangential magnetic fields can be found through the
characteristic impedance

. _ Lo —for (+2) propogation
€(m, n) = FZZ x hi(m, n){ +for (—z) propagation &
where i is either TE or TM and
-w (el mn
ZTE = ada , ZTM = Jmn ®
Ymn Jwe

The tangential fields are sufficient to define the normalized
Floquet voltage waves [9] at a plane z as they represent
power traveling in the =z direction. Note that in defining the
TE and TM fields, such as shown in (5) and (6), they have
been normalized to obtain a symmetric scattering matrix for
reciprocal structures

& iy - (+£7)dS =1,

unit cell

t=TE or TM. (9)

The normalizing direction, Z, is dependent on whether the
waves are forward or backward traveling. Therefore the sign
of either érp or ﬁTE must change dependent on the direction
of propagation. As mentioned previously, it is convenient to
choose the sign of the electric field components to remain the
same, except for the necessary change on the -,,, exponent
in (4). Thus

o —t ——
&f =& and h; =—h,

T T

i=TE or TM
10)
guarantees that reflection from a pec plate will give a reflection
coefficient of —1.
The total tangential electric field at a reference plane z =
#' is then weighted by the appropriate coefficients of the

normalized Floquet harmonics

for z =0,

Ei(mv n) = Ci_'—(m? n) é?-('mﬂ n) + C; (m,n)é; (m,n)
¢t = TE or TM an

where Cfp(m,n) &fg(m,n) is analogous to the forward
traveling voltage on a transmission line. Likewise the magnetic
field will correspond to the forward traveling current, which
is related to the electric field via (7). From (11) the scattering
parameters can be defined at port ¢ due to an incident Floquet
harmonic at port j,

C’ii(m, n) é’?:(m,n)
CF(m,n) & (m,n)

CE(m, n)eFrmn?’
CF (m, )

where the reference plane is located at z = y = 0 and 2z = 2’.

C. Power Waves at the Device Under Test (DUT)

It is now necessary to define the scattering parameters at the
device ports due to incident Floquet harmonics. For the planar
geometry as shown in Fig. 1, the device port locations are
not terminated in transmission lines with known characteristic

az2) -

Fig. 3. - Unit cell of one-port device for waveguide simulation. The substrate
is RT/duroid 5880 with ¢, = 2.2 and a thickness of 0.32 cm (0.125 in).
The port is terminated with a chip resistor of length 0.1 cm, width 0.05 cm,
and height of 0.04 cm.

impedance. Therefore it is necessary to choose generalized
power waves as described by Kurokawa [19]

Vit Zypdy

ap = T2k 13
" 2VRe Za] )
_ Vi — Zi 1y, (14)

b = & Zhok
"~ 2/[Re Zy|

By convenience, the normalizing impedance Zj, at the kth
port is chosen to be the input impedance. Thus the scattering
parameters as given by (12) are determined with the device
ports matched, V;, = —Z Iy, so that a; = 0.

The scattering parameters between the jth incident Floquet
harmonics and kth device ports are then computed via

Ski = —Ik\/ |Re -Zk—i

by conveniently choosing C’f(mjn)‘ﬁ%nzl = 1. By reci-
procity, the scattering parameters due to excitation at the
device ports are found by using the symmetry of the resulting
scattering matrix. The input reflection coefficient at the kth
device location, Sk is then computed by

Iy —Zy"
T+ Zit

Thus (12), (15), and (16) define the generalized scattering
matrix for the periodic array. Note that when the supporting
superstrate and substrates materials are lossless, the computed
generalized scattering matrix satisfies the usual conditions re-
lated to power conservation. The generalized scattering matrix
approach will be verified in the next section by measurements
in a waveguide simulator.

5)

Skk (16

II. WAVEGUIDE SIMULATION

Fig. 3 shows the one port dipole unit cell to be simulated in
a waveguide simulator. The substrate is supported by Rogers
RT/duroid 5880, ¢, = 2.2, that is 0.32 cm thick. To support
two orthogonal modes for two port device measurements, the
unit cell was placed in square waveguide. The dimensions of
one edge of the square unit cell is 4.74 cm, and the dipole



764 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO 5, MAY 1996

“Input” Waveguide - Sources

“Qutput” Wavequide - No Sources

a, \ 32
b, B CO. N | A b,
BN \ :
One Port at D.U.T.
a3
B et
bs
U NS
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has a length of 4.0 cm and width of 0.44 cm. The dipole is
loaded with a chip resistor of length 0.1 cm, width 0.5 cm,
and height of 0.04 cm.

Fig. 4 shows a simplified diagram of the one-port device
in the waveguide. In this simplified diagram the generalized
scattering matrix, S™™, computed by the procedure outlined
above results in a three-port scattering matrix relating the field
quantities at ports 1 and 2, to the power wave representation
at the device port of port 3. Upon calibration at the waveguide
ports, the computed generalized scattering matrix of S*"™
then forms the embedding network to which the chip resistor
is attached. Since the scattering matrix for this embedding
network is known, the scattering parameters of the chip
resistor load, Sd“t, can be determined from measurements at
waveguide ports 1 and 2. Therefore the approach taken here
to verify S™™ is as follows: the scattering matrix for the
embedding network S™™ will be computed, a known device
under test represented by S9U will be attached, the scattering
matrix at the external ports of the complete system consisting
of $™um attached to St is measured, S9U¢ is computed from
the measured data.

In the more general case which uses a square unit cell
the measurement of the two orthogonal TE modes, TE¢g; and
TE1g, in the square waveguide are required. For measurement
of these two orthogonal modes, orthomode junctions become
part of the embedding network as shown in Fig. 5. Therefore
the generalized scattering matrix for the unit cell, S™"™,
is represented by a five-port generalized scattering matrix
for a one-port device, and a six-port generalized scattering
matrix for a two-port device. The composite scattering matrix
resulting from the combination of S™™ and S9"* with the
measured scattering parameters of the orthomodes forms a
four-port embedding network. Measurement of the resulting
four-port scattering matrix then allows for extraction of S3ut.

A. Test Setup Characterization

Addition of the orthomode junctions into the measurement
setup requires measurement of the S parameters of these
four-port devices. Determination of the S parameters of the
orthomodes is complicated by the need to place standards
at the square waveguide port that match one of the TE
modes, while reflecting the orthogonal mode with known
magnitude and phase. This was accomplished by using a

stepped transition in one dimension from 4.74 cm to 3.27 cm,
and then from 3.27 cm to rectangular waveguide of 2.21 cm
by 4.74 cm, which only supports one dominant TE mode. A
mode-matching solution was used to calculate the magnitude
and phase of the stepped transition so that it could be used
as a standard in determination of the S parameters of the
orthomode junctions.

In order for the relatively narrow band stepped transitions to
exhibit greater than 20 dB return loss, and to avoid introduction
of the higher order TE,; and TM;; modes, it was necessary
to limit the measurement range from 4.0 GHz to 4.4 GHz.
Note that the addition of the orthomodes creates a source
of uncalibrated error in the measurement system, which is
calibrated in rectangular waveguide. Assessment of errors due
to the presence of the orthomodes was done by connecting
two “identical” orthomodes so that their square waveguide
ports are together. The external ports presented then allow for
a four port measurement in rectangular waveguide. Thus the
perfect “thru” junction between the two orthomodes can be
de-embedded. This measurement indicated a maximum of 8%
etror in magnitude of one propagating mode, and 3% error in
the magnitude of the orthogonal square waveguide mode with
phase error less than 2.2 degrees for both modes.

The use of square waveguide for simulation of a periodic
array requires the solution of the periodic array problem for
the two Floquet modes composing the TEgy; mode. These
plane waves are incident at an angle § which varies from 46
to 52 degrees over the frequency range of the measurement.
This large angle of incidence results in additional reflection
of the m = —1 Floquet harmonic, which must be properly
combined with the two original exciting modes when forming
S™um Jp order to satisfy the boundary conditions of the square
waveguide, a rotation of ¢ = 90 degrees then computes the
parameters for the TE;¢ mode. Thus a ten-port representation
of §™"™ using Floquet modes is reduced to a six-port scattering
matrix for waveguide simulation with a two-port device.

The square waveguide simulation of the grid amplifier used
here forces plane wave solutions that satisfy the boundary
conditions of the waveguide. Therefore it must be realized
that only in order to compare with waveguide measurement
is this behavior being forced on the solutions. It is noted that
waveguide simulation of a single unit cell is only equivalent to
an infinitely periodic grid amplifier when the periodic amplifier
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is operating in modes properly imaged by the waveguide walls.
It is noted that the infinitely periodic grid amplifier is not
limited to this subset of its possible modes of operation, nor
is the generalized scattering matrix approach.

The use of Floquet modes allows the approach here to be
applied to arbitrary angles of incidence, in addition to those
that satisfy the waveguide boundary conditions. This is evident
in the inclusion of two plane waves to properly form the
TEp; mode as described above. In practice we expect the
array to be excited by a single plane wave at an arbitrary
angle 6, which need not be representable by a waveguide
simulator, and would choose the Floquet modes for this angle
of incidence. Therefore the generalized scattering matrix could
also be applied to grid oscillators operating in a mode that
cannot be simulated using a single unit cell in a waveguide.
For grid amplifier design this method is also applicable to a
grid suffering from common-mode oscillations [20].

B. Results for a One-Port DUT

Fig. 6 shows the results of de-embedding the S"* parame-
ters of the unit cell shown in Fig. 3 when the load is replaced
by a conducting patch. The de-embedded S9“* parameter
shown is normalized to the antenna input impedance. The
superstrate layer for this unit cell consists of an air layer with
a thickness of 1 cm. The inclusion of the air superstrate layer
allows the generalized scattering matrix for the array to be

properly referenced to the interface of the support fixture for
the unit cell, and the face of the orthomode junction. The
support fixture used consisted of a square waveguide section
of length 1.32 cm in which the unit cell was press fitted. This
allowed for removal and replacement of the device under test.

Fig. 7 shows the de-embedded S9"* parameter for the unit
cell shown in Fig. 3 when it is loaded with a 51 Q chip resistor.
The theoretical curve is computed by using the computed
input impedance, Z,,,, which is the normalizing impedance.
The frequency dependence of the theoretical curves is due to
the slight variation in the input impedance which varies from
(164.8 — j8.2) Q to (178.8 4 j6.1) Q2 from 4.0 to 4.4 GHz.
The maximum error in the measured magnitude of the device
S parameter is 8.6%.

The load impedance magnitude and phase for the one-port
device can be calculated since the normalizing impedance, the
input impedance at the device port Z,,, is known

SdutZzn + Zzn
1-— Sdut

Zload = a7

The nonlinear nature of this conversion may increase or
decrease the error in the measured S parameter S, but puts
the results in a more readable form. Fig. 8 shows the measured
load impedance magnitude and phase as computed from (17).
The measured load magnitude is in error by approximately
8.4%. As expected the relative error when represented by
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(17) was minimal when the loading chip resistor was more
closely matched to the input impedance presented at the
device. Although it was not done here, incorporation of error
correction terms into the measurement system would alleviate
these problems.

It is appropriate to make some comment about the phase
gradients shown in Figs. 6(b) and 7(b). Some success in
minimizing the phase gradients was experienced by changing
the reference plane for the 0.32 cm thick substrate in the square
waveguide support fixture of length 1.32 cm. This indicates
that the phase gradient may be representative of a small length
change in the measurement system caused by insertion and
removal of the support fixture, or movement of the test piece
in the support fixture.

Also measurement spikes are shown in all measured curves
near 4.25 GHz, as can be seen in Fig. 8(b). The origin of the
spikes is related to the phase change of the .S parameter for
the orthomode junction that describes the relationship between
a square waveguide port and its strongly coupled rectangular
port. At the frequency of 4.25 GHz there is a 180-degree phase
change in this orthomode scattering parameter. Since the two
orthomodes are not truly identical, this phase change occurs at
slightly different frequencies. Again it is believed that proper
error correction terms could remove this error. An appropriate
calibration piece for determination of the error terms would be
the unit cell shown in Fig. 3 when the load is the conducting

Fig. 9. Unit cell of two-port device for waveguide simulation. The substrate
is RT/duroid 5880 with €, = 2.2 with a thickness of 0.32 cm (0.125in).
The port is terminated with a differential pair HEMT designed and fabricated
at JPL.

patch. The scattering matrix for this calibration piece would
be computed by the methods described here.

Before moving to results for two-port devices it is noted that
measured transmitted and reflected parameters of the loaded
unit cell, such as those depicted by S»; and in Sy2 in Fig. 4,
were also measured and compared to theoretical results. These
four-port parameters were, in general, of similar accuracy
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Fig. 10. De-embedded two-port S9Ut: load impedances of the unit cell shown in Fig. 9 when the loads are two 120-ohrn chip resistors, (a) measured

load magnitude and (b) measured load phase.

to the load de-embedding results presented. This provided
another method of verifying a composite scattering matrix
formed from the combination of the generalized scattering
parameters for the periodic array, S™™, and the parameters
of the device, S9u¢. A final check on this composite scattering
matrix results from including the chip resistor directly in the
computation of S™™™ through the surface impedance in (1).

C. Results for a Two-Port DUT

Fig. 9 shows the two-port unit cell used for waveguide
simulation. The substrate and individual dipole dimensions are
the same as the single dipole shown in Fig. 3. By separating
orthogonal chip resistors by a thin layer of polyimide, each
individual dipole was loaded independently with no connection
to the other device. In this configuration equation (17) can be
used to de-embed the load impedance values, the chip resistors,
from the measured data. Fig. 10 shows the measured results
when two 120 Q chip resistors are used. The average error
on the vertical loaded port, port 5, is 4.4% while the average
error on the horizontal port, port 6, is 15.8%. This is more
error than expected due to a worst case linear summation of
the two polarizations of the orthomodes, 11%. The maximum
phase angle measured was 24 degrees.

D. Results for a Differential Pair HEMT Two-Port DUT

Since it is difficult to measure the differential pairs often
used in grid amplifiers [3]-[5] when operating in a balanced
mode, waveguide simulation of a single unit cell provides a
means of measuring these parameters. The unit cell configu-
ration shown in Fig. 9 was used to measure a differential pair
HEMT wire bonded in the configuration shown in Fig. 1. Upon
measurement of the four-port scattering matrix at the external
rectangular waveguide ports of the two orthomode junctions,
the two-port S9%* parameters of the differential HEMT pair
were extracted for different bias levels.

The monolithic differential pair, shown in Fig. 1, consists of
two 0.15 micron, pseudomorphic HEMT’s along with various
passive circuitry. The devices are arranged with common
sources. The source bias pads are connected to the device
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Fig. 11. Magnitude of de-embedded device S9"* parameters, normalized to
50 ohms, when the unit cell shown in Fig. 9 is loaded with a differential pair
HEMT biased at 5 V, 8.0 mA.

sources through 50 €2 resistors in order to suppress common-
mode oscillations [4]. This resistance will contribute to the
dc power consumption of the chip, but since the sources
themselves are connected together, the resistance does not
degrade the device gain. Gates are connected to ground
through a higher value resistor for simplicity, although this
approach adversely affects the gain and provides no means for
adjusting the gate bias.

Fig. 11 shows the de-embedded two-port §9%¢ parameters
of the differential pair HEMT. The devices are biased with a
drain bias of 5 V and 8 mA. To put the generalized scattering
parameters in a more standard form, Fig. 11 shows scattering
parameters normalized to 50 ohms. Note the large mis-match
of the devices to both input and output ports, as represented by
511 (gates) and Ss (drains), for this normalizing impedance.
Even with the mis-matches on input and output the necessary
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conditions for stability

[S11] <1, |Sa2| <1 (18)
are satisfied. Fig. 12 shows the scattering parameters normal-
ized to 50 ohms when the drain bias becomes 0 V.

Fig. 13 shows the magnitude of the generalized scattering
parameters as computed, where the normalizing impedances
are the input impedances at the ports. This corresponds to
the actual device loading presented by the grid during the
waveguide measurement. The result is a more desirable match
to the device at higher frequencies as shown. And as the input
match improves, the transducer power gain, S21, increases
until the maximum of 0.8 dB is reached at 4.4 GHz.

The generalized scattering matrix for the unit cell S™™ is
represented by a six-port generalized scattering matrix for this
two-port device. The coupling between port 5 of the vertical
dipole and port 6 of the horizontal dipole is <—40 dB. This
coupling represents the feedback through the embedding array
from the output of the devices to the input, and was minimized
by the symmetric geometry chosen.

IV. CONCLUSION

A generalized scattering matrix for modeling of grid am-
plifier and oscillator arrays has been developed and verified
experimentally. The method incorporates a generalized scat-
tering matrix representation for the embedding periodic array,
where Floquet harmonics represent ports of the array. These
additional ports are combined with power wave representations
at the device ports, which are in the plane of the array.

The presence of the device ports allows the scattering matrix
representation for the embedding array to be combined with
a scattering matrix for the device. Thus standard scattering
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Fig. 13 De-embedded device S dut parameters, normalized to input imped-

ances, when the unit cell shown in Fig. 9 is loaded with a differential pair
HEMT biased at 5 V, 8.0 mA.

matrix design methods and approaches are valid for grid
amplifier design. To verify this, the computed generalized
scattering matrix for the embedding array, S™"™, was used to
de-embed the scattering parameters of known chip resistors.
Experimentally this involved using a waveguide simulation
of one unit cell, and combining the scattering matrices of
two orthomode junctions with the scattering matrix of the
embedding array, S™™. With the scattering matrix between
the rectangular waveguide ports of the orthomodes and the
device ports in the unit cell then known, conventional de-
embedding techniques were used to determine the chip resistor
values, S4ut. Results for loaded dipoles with one-port and
two-port devices were presented. Scattering parameters of a
differential pair amplifier, operating in a balanced mode, were
measured using a single unit cell of a grid amplifier.

The use of Floquet harmonics avoids magnetic and electric
wall assumptions. Use of TE and TM Floquet modes allows
the orthogonal polarizations of the grid amplifier to be defined
as input and output ports in the scattering matrix. If a grid
amplifier, such as the one shown in Fig. 1, is excited by a
horizontal polarization the output is predominantly polarized
in the vertical direction. But, the presence of bias lines causes
coupling between input and output polarizations. Using the
generalized scattering matrix, this coupling was computed
for the geometry shown in Fig. 9. In addition the stability
conditions at the device ports were examined for this geometry.

The waveguide simulator environment, which specified non-
normal angles of incidence, demonstrates the flexibility of
this approach for analyzing periodic grid amplifier and grid
oscillator arrays. Although not demonstrated here, the Floquet
mode representation allows for the combination of polarizers
and other periodic structures commonly used in quasi-optical
setups by cascading of scattering matrices [9]. Furthermore,
the generalized scattering matrix representation lends itself to
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examination of the input and output stability circles of such
a quasi-optical system.
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